

Государственное профессиональное образовательное учреждение Ярославской области Ярославский градостроительный колледж

СОГЛАСОВАНО: учебно-методической комиссией детский технонарк «Кванториум» Протокол № 8 от «21» шал 2025г.

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «ХАЙТЕК»

Введено в действие с 1 сентября 2025 г.

Номер экземпляра:	Возраст обучающихся: 12-18 лет
	Срок реализации: 36-40 недель
	Направленность: техническая
Место хранения:	Модуль: углубленный
	Объём часов: 144 часа

ДОПОЛНИТЕЛЬНАЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ОБЩЕРАЗВИВАЮЩАЯ ПРОГРАММА «Хайтек»

Организация – разработчик: ГПОУ ЯО Ярославский градостроительный колледж, структурное подразделение «Кванториум»

Автор разработки:

Ремезов Александр Константинович - педагог дополнительного образования,

Исаева Светлана Николаевна – зам. руководителя структурного подразделения - детский технопарк «Кванториум»,

Иванова Елена Валериевна – методист структурного подразделения – детский технопарк «Кванториум»,

Погосова Юлия Владимировна – методист структурного подразделения - детский технопарк «Кванториум».

Реестр рассылки

№ учтенного экземпляра	Подразделение	Количество копий
1.	Структурное подразделение «Кванториум»	1
2.	Педагог дополнительного образования	1
Размещено	Сайт колледжа/ Дополнительное образование/Кванториум Портал ПФДО	

ОГЛАВЛЕНИЕ

	Стр.
1. Пояснительная записка	
1.1 Нормативно-правовые основы разработки программы	4
1.2 Направленность программы	5
1.3 Цель и задачи программы	5
1.4 Актуальность, новизна и значимость программы	6
1.5 Отличительные особенности программы	7
1.6 Категория обучающихся	8
1.7 Условия и сроки реализации программы	8
1.8 Примерный календарный учебный график	9
1.9 Планируемые результаты и способы отслеживания образовательных	9
результатов	
2. Учебно-тематический план	12
3. Содержание программы	14
4. Организационно-педагогические условия реализации программы	
4.1 Методическое обеспечение программы	24
4.2. Материально-техническое обеспечение программы	27
4.3. Кадровое обеспечение программы	33
4.4. Организация воспитательной работы и реализация мероприятий	33
5. Список литературы и иных источников	36
Приложения	39

1. Пояснительная записка

1.1. Нормативно-правовые основы разработки программы

Настоящая дополнительная общеобразовательная общеразвивающая программа «Хайтек» (далее - программа) разработана с учетом:

- Федерального закона от 29.12.12 № 273-ФЗ «Об образовании в Российской Федерации»;
- Федерального закона от 31.07.2020 № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся»;
- Распоряжения Правительства Российской Федерации от 31.03.2022г. № 678-р «О Концепции развития дополнительного образования детей до 2030 года»;
- Приказа Министерства просвещения Российской Федерации от 27.07.2022 № 629
 «Порядок организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»;
- Приказа Министерства просвещения Российской Федерации от 03.09.2019 № 467
 «Об утверждении Целевой модели развития региональных систем дополнительного образования детей»;
- Постановления Главного государственного санитарного врача Российской Федерации от 28.09.2020 № 28 «Об утверждении санитарных правил СП 2.4. 364820 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи»;
- Постановления правительства ЯО от 17.07.2018 № 527-п (в редакции постановления Правительства области от 24.10.2024 N 1081-п) об утверждении Концепции персонифицированного дополнительного образования детей в Ярославской области;
- Приказа департамента образования ЯО от 21.12.2022 № 01-05/1228 «Об утверждении программы персонифицированного финансирования дополнительного образования детей»;
- Устава государственного профессионального образовательного учреждения
 Ярославской области Ярославского градостроительного колледжа;
- Положения о реализации дополнительных общеобразовательных программ в ГПОУ
 ЯО Ярославском градостроительном колледже;
- Рабочей программы воспитания детского технопарка «Кванториум» на 2025–2026 учебный год.

1.2. Направленность программы

Дополнительная общеобразовательная общеразвивающая программа «Хайтек» относится к программам технической направленности.

1.3. Цель и задачи программы

Цель – формирование предметных (технических) компетенций в области работы с высокотехнологичным оборудованием и профессиональным программным обеспечением через интеграцию теоретической подготовки и практической деятельности, применение инновационных методов обучения, а также организацию конкурсной деятельности и проектно-исследовательской работы обучающихся.

Задачи

Обучения:

- сформировать навык совмещения разработки моделей в системах автоматизированного проектирования и графических редакторах с их изготовлением на высокотехнологичном оборудовании из области аддитивных, лазерных, фрезерных технологий;
- совершенствовать навыки разработки конструкторско-технологической документации и трехмерных моделей деталей в системах автоматизированного проектирования (САПР);
- научиться создавать сложные геометрические модели и проводить их базовые расчеты с использованием режимов работы в программе КОМПАС-3D;
- научить использовать унифицированные сборочные детали и единицы при проектировании для минимизации время затрат;
- совершенствовать навыки работы на лазерном, аддитивном и фрезерном оборудовании с числовым программным управлением (ЧПУ);
- совершенствовать навыки использования программного обеспечения для настройки, наладки и управления оборудованием с ЧПУ;
- научить решать нестандартные, нелинейные задачи путем включения в конкурсную деятельность на протяжении всего образовательного процесса;
- совершенствовать навыки работы с электронными компонентами, электротехническим оборудованием;
- обучить основам программирования контроллеров Arduino;
- сформировать представление об основах экономического расчета проекта;
- совершенствовать навыки подготовки проектной документации и публичных выступлений;
- научить пользоваться демонстрационным оборудованием.

Развития:

- выявлять и поддерживать способности к инженерно-конструкторской, исследовательской и проектной деятельности;
- формировать культуру безопасности при работе с промышленным оборудованием и вычислительной техникой;
- мотивировать к изучению технических дисциплин через практико-ориентированные задания и кейсы;
- формировать опыт совместного решения технических задач в проектных группах;
- развивать креативное, техническое и технологическое мышление;
- развивать навыки аргументации собственной точки зрения, публичных выступлений и командной коммуникации;
- развивать навык критической оценки собственных сил, решений;
- развивать навык самоанализа, рефлексии;
- повышать цифровую грамотность через использование профессионального программного обеспечения;
- развивать адаптивность к современным технологиям и методам обработки материалов;
- мотивировать к постоянному профессиональному и личностному росту.

Воспитания:

- воспитывать внимательность, усидчивость, самоконтроль;
- воспитывать уважение к интеллектуальному и физическому труду;
- воспитывать культуру здорового образа жизни;
- воспитывать бережное отношение к ресурсам, природе и окружающему миру;
- воспитывать культуру общения и устной коммуникации;
- воспитывать культуру пользования цифровой техникой;
- формировать потребность в достижении качественного законченного результата;
- создать условия для вовлечения в воспитательный процесс участников образовательных отношений на принципах сотрудничества и взаимоуважения.

1.4. Актуальность, новизна и значимость программы

В условиях стремительного технологического развития и перехода к цифровой экономике особую значимость приобретает система подготовки будущих инженернотехнических кадров, способных обеспечить технологический суверенитет страны. Настоящая программа разработана в ответ на вызовы современности, когда формирование технически грамотной, творчески мыслящей молодежи становится стратегической задачей

национального масштаба. Она направлена на раннюю профессиональную ориентацию обучающихся, развитие их инженерного мышления и подготовку к решению актуальных производственных задач, что в перспективе будет способствовать укреплению научнотехнического потенциала Российской Федерации.

Особенностью программы является ее инновационная методическая основа, сочетающая передовые образовательные технологии с уникальной материально-технической базой «Хайтек»-квантума. В отличие от традиционных подходов, программа реализует принцип сквозного проектного обучения, где каждый обучающийся последовательно проходит все этапы - от генерации идеи до создания рабочего прототипа. Такой формат позволяет не только освоить современные технологии обработки материалов и работы с высокотехнологичным оборудованием, но и развить критически важные в современном мире компетенции: системное мышление, способность к командной работе, умение быстро адаптироваться к изменяющимся технологическим реалиям.

Значимость программы заключается в ее комплексном воздействии на профессиональное и личностное становление обучающихся. Через вовлечение в проектную и исследовательскую деятельность формируется не только техническая грамотность, но и такие качества как инициативность, ответственность, способность к нестандартным решениям. Особое внимание уделяется развитию предпринимательского мышления обучающиеся получают опыт оценки экономической эффективности технических решений.

Программа соответствует приоритетным направлениям развития дополнительного образования, заложенным в концепции детских технопарков "Кванториум", и создает условия для выявления и поддержки одаренных детей в сфере технического творчества. Ее реализация способствует формированию нового поколения инженеров и исследователей, готовых к работе в сфере науки и технологий, что имеет важное значение для обеспечения технологического лидерства страны в долгосрочной перспективе.

1.5 Отличительные особенности программы

Дополнительная общеобразовательная общеразвивающая программа «Хайтек» обладает уникальным сочетанием характеристик, обеспечивающих комплексное развитие обучающихся в сферах инженерии и технического творчества. Её ключевой особенностью является органичное соединение теоретической подготовки с практической деятельностью, где освоение теории решения изобретательских задач и основ инженерии сочетается с непосредственной работой на современном оборудовании и программном обеспечении для реализации собственных проектов.

Особый акцент сделан на формировании устойчивой мотивации к техническому творчеству и изобретательству, что создаёт прочную основу для профессионального самоопределения обучающихся. Настоящая программа предоставляет широкие возможности для выявления и развития индивидуальных интересов обучающихся, позволяя каждому найти перспективные направления для углублённого изучения.

Важной отличительной чертой является практико-ориентированный подход, при котором полученные знания немедленно находят применение в работе с высокотехнологичным оборудованием. При этом программа не ограничивается формированием профессиональных компетенций, а создаёт условия для интеллектуального и духовно-нравственного развития, способствуя социально-культурной адаптации и творческой самореализации обучающихся.

Инновационный характер программы проявляется в её направленности на освоение современных технологий и подготовку к работе с перспективными техническими решениями. Такой многоуровневый подход обеспечивает гармоничное развитие как профессиональных навыков, так и личностных качеств, необходимых для успешной деятельности в технической сфере.

1.6 Категория обучающихся

Дополнительная общеобразовательная общеразвивающая программа «Хайтек» разработана для работы с обучающимися от 12 до 18 лет (6 -11 классы). Настоящая программа ориентирована на мотивированных детей, освоивших вводный модуль программы по направлению «Хайтек».

Программа не адаптирована для обучающихся с ОВЗ.

1.7 Условия и сроки реализации программы

Наполняемость учебной группы составляет не менее 8 и не более 18 человек.

Форма обучения – очная, с использованием дистанционных технологий, информационно-коммуникационных технологий (ИКТ).

Режим занятий:

- при очной форме обучения 2 раза в неделю по 2 академических часа (2 части занятия по 35 минут с 10-минутным перерывом);
- при использовании дистанционных технологий продолжительность занятия 2 академических часа (2 части занятия по 35 минут с 10-минутным перерывом) на учебной Интернет-платформе «Сферум» и учебных онлайн-сервисах и программном обеспечении.

Объем учебной нагрузки в год -144 часа, в неделю -4 часа. Продолжительность учебного года -36 недель.

Занятия проводятся в кабинете Хайтека, оборудованном согласно санитарноэпидемиологическим требованиям.

Форма занятий - групповая, по подгруппам, в парах.

Форма аттестации – промежуточная, с применением различных видов контроля.

1.8 Примерный календарный учебный график

Календарный учебный график для заполнения педагогами дополнительного образования представлен в приложении 1.

1.9. Планируемые результаты и способы отслеживания образовательных результатов

Планируемые результаты освоения дополнительной общеобразовательной общеразвивающей программы «Хайтек» включают в себя:

Обучающийся будет знать:

- правила техники безопасности при работе на промышленном высокотехнологичном оборудовании и правила поведения в «Хайтек»- квантуме;
- принципы создания трехмерных моделей деталей в системах автоматизированного проектирования;
- этапы проектирования и создания 2D- и 3D-моделей в системе автоматизированного проектирования КОМПАС-3D;
- способы быстрого проектирования деталей машин и механизмов с использованием встроенных режимов моделирования и библиотек в программе КОМПАС-3D;
- принцип унификации сборочных единиц, применяемый при проектировании деталей и сборочных узлов;
- способы моделирования листовых деталей в системе автоматизированного проектирования КОМПАС-3D;
- назначение и основы выполнения различных видов расчетов деталей и сборочных узлов;
- способы формирования ассоциативных чертежей деталей и сборочных чертежей в системе автоматизированного проектирования КОМПАС-3D;
- технологии работы с промышленным аддитивным, лазерным и фрезерным оборудованием с числовым программным управлением;

- основы языка программирования С++;
- принцип действия и назначение электронных компонентов схем и контроллеров;
- информационные площадки и сайты с конкурсами, внешними и внутренними мероприятиями различного уровня;
- основы тайм-менеджмента, экономического расчета проекта;
- последовательность этапов при проектировании продукта;
- основы публичных выступлений и защит проектов.

Обучающийся будет уметь:

- продуктивно использовать техническую литературу и сеть Интернет для поиска предпроектных решений;
- самостоятельно искать и анализировать информацию, необходимую для решения конкретной задачи;
- вести научно-исследовательскую, инженерно-конструкторскую и проектную деятельность;
- активно и продуктивно взаимодействовать с товарищами по команде в ходе создания общего проекта;
- создавать сложные по геометрии трехмерные модели для решения инженерных задач;
- разрабатывать конструкторско-техническую документацию;
- производить первичную настройку аддитивного оборудования для осуществления
 3D-печати;
- производить выбор материала для 3D-печати, исходя из конкретных требований и задач;
- выбирать материал, режим работы и настройки лазерного оборудования для последующей работы;
- производить первичную настройку фрезерного оборудования, а также управление им в ручном и автоматическом режимах;
- осуществлять самостоятельный выбор режущего инструмента для фрезерных станков с ЧПУ;
- собирать базовые электронные устройства с использованием макетных плат;
- писать код на языке C++ для программирования контроллеров Arduino;
- разрабатывать проектную документацию;
- находить нестандартные решения и решать нелинейные задачи при участии в конкурсах и олимпиадах;

- осуществлять экономический расчет проекта;
- самостоятельно организовывать последовательность и этапы проектных работ;
- презентовать конкретные проектные решения.

Обучающийся будет осознавать:

- меру ответственности за принятые решения (командные и индивидуальные);
- важность соблюдения техники безопасности и правил поведения в квантуме в ходе учебных занятий;
- необходимость бережного отношения к окружающей среде;
- важность освоения передовых технологий и ценность навыков управления инновационным промышленным оборудованием;
- необходимость бережного отношения к инструменту и оборудованию;
- перспективы участия в конкурсной и проектной деятельности;
- вариативность выбора сфер собственного профессионального развития;
- необходимость выбора профессиональной траектории на основе собственных интересов.

Способы отслеживания образовательных результатов:

- промежуточная аттестация по окончанию модуля;
- применение различных видов контроля по окончании раздела или входящих в него тем (опрос/тест/контрольное задание/презентация кейса/защита проекта):
- педагогическое наблюдение в ходе учебных занятий;
- участие во внешних и внутренних мероприятиях конкурсах и олимпиадах различного уровня.

2. Учебно-тематический план программы «Хайтек»

№	Раздел и темы	Количество часов		Всего	Форма
	таздел и темы	Теория	Практика	Decro	контроля
1	Вводное занятие. Введение в учебный курс.	1	1	2	
1.1	Вводное занятие. Введение в учебный курс.	1	1		Опрос
2	Повторение ранее изученного материала.	4	4	8	
2.1	Создание трехмерных моделей деталей в системе автоматизированного проектирования КОМПАС – 3D.	1	1		Контрольное задание
2.2	Подготовка файлов трехмерных моделей к печати на 3D-печати.	1	1		Опрос
2.3	Создание векторных изображений в графическом редакторе Corel Draw и настройка цветов.	1	1		Контрольное задание
2.4	Управление фрезерными станками с ЧПУ в ручном и автоматическом режимах.	1	1		Контрольное задание. Опрос.
3	Режимы моделирования и библиотеки в КОМПАС-3D.	10	16	26	
3.1	Режимы твердотельного моделирования деталей и сборки в КОМПАС-3D.	2	6		Контрольное задание
3.2	Библиотека «Стандартные изделия». Добавление унифицированных крепежных деталей в сборку.	2	2		Контрольное задание
3.3	Режим моделирования листовых деталей в КОМПАС-3D.	2	2		Самостоятельна я работа
3.4	Быстрое моделирование деталей машин и механизмов с помощью встроенных библиотек.	2	2		Опрос
3.5	Библиотеки для осуществления расчетов моделей в КОМПАС-3D.	2	4		Опрос. Тест.
4	Подготовка конструкторско- технологической	2	6	8	

	документации.				
	Создание ассоциативных				TC
4.1	чертежей трехмерных	1	3		Контрольное
	моделей деталей.				задание
4.2	Создание чертежей сборки	1	3		Контрольное
	в КОМПАС-3D. Технологии аддитивного				задание
5	производства.	4	14	18	
5.1	Программное обеспечение для подготовки файлов трехмерных моделей к печати.	2	2		Опрос
5.2	Технологии фотополимерной печати.	2	2		Опрос
5.3	Выполнение кейса.	0	10		Презентация кейса. Тест.
6	Технологии лазерной резки.	2	12	14	
6.1	Изучение режимов лазерной резки в зависимости от свойств материалов.	2	4		Опрос
6.2	Выполнение кейса.	0	8		Презентация кейса. Тест.
7	Фрезерные технологии с ЧПУ.	2	8	10	
7.1	Изучение режимов фрезерования в зависимости от свойств материалов.	2	2		Опрос
7.2	Выполнение кейса.	0	6		Презентация кейса
8	Основы микроконтроллера Arduino.	4	12	16	
8.1	Технологии работы с электронными компонентами.	2	4		Опрос
8.2	Программирование на Arduino.	2	8		Презентация кейса. Тест.
9	Подготовка к участию в конкурсах и олимпиадах.	2	10	12	
9.1	Подготовка к участию в конкурсах и олимпиадах.	2	10		Выполнение конкурсного задания
10	Разработка инженерного продукта.	4	26	30	
10.1	Разработка инженерного продукта.	4	26		Защита кейса
Итого	1 1	35	109	144	

3. Содержание программы

Раздел 1 «Вводное занятие. Введение в учебный курс»

Тема 1.1 Вводное занятие. Введение в учебный курс

Теория

Повторение правил техники безопасности при работе на оборудовании, с инструментами и правил поведения в квантуме. Обсуждение направлений деятельности в новом учебном году. Определение ключевых векторов развития. Мотивация к участию во внешних мероприятиях и разработке собственных инженерных продуктов с использованием высокотехнологичного оборудования квантума.

Практика

Индивидуальный опрос по технике безопасности и правилам поведения в квантуме. Заполнение матрицы мотивации. Обсуждение заполненной матрицы.

Форма контроля

Опрос.

Раздел 2 «Повторение ранее изученного материала»

Тема 2.1 Создание трехмерных моделей деталей в системе автоматизированного проектирования КОМПАС – 3D

Теория

Актуализация знаний о системах автоматизированного проектирования, интерфейсе работы в документе «Деталь». Повторение этапов создания трехмерной модели детали. Повторение базовых команд формообразования.

Практика

Создание простой детали по чертежу в режиме твердотельного моделирования в системе автоматизированного проектирования КОМПАС-3D. Создание рабочей папки на персональном компьютере. Сохранение файла в рабочую папку.

Форма контроля

Контрольное задание.

Тема 2.2 Подготовка файлов трехмерных моделей к печати на 3D-печати

Теория

Актуализация знаний об аддитивных технологиях. Повторение форматов экспорта файлов трехмерных моделей для последующей нарезки на слои в слайсерах. Рассмотрение

интерфейса слайсера Ultimaker Cura. Повторение способов настройки файла для последующей печати на 3D-принтере.

Практика

Повторение способов экспорта детали в формате. stl. Самостоятельная настройка ранее созданного файла трехмерной модели детали в слайсере Ultimaker Cura с помощью быстрых настроек. Сохранение файла.

Форма контроля

Опрос.

Тема 2.3 Создание векторных изображений в графическом редакторе Corel Draw и настройка цветов

Теория

Актуализация знаний о видах компьютерной графики и векторных редакторах. Рассмотрение интерфейса графического редактора Corel Draw. Повторение параметров первичной настройки рабочего листа. Повторение команд создания векторных изображений. Повторение способов изменения цвета контуров и заливки.

Практика

Самостоятельное создание векторного изображения по примеру с использованием команд в векторном редакторе Corel Draw. Сохранение файла в рабочую папку.

Форма контроля

Контрольное задание.

Тема 2.4 Управление фрезерными станками с ЧПУ в ручном и автоматическом режимах

Теория

Актуализация знаний о фрезерном оборудовании и инструментах, применяемых в процессе фрезерования, способах управления станками. Повторение команд виртуальных панелей управления станками SRM20 и MDX50. Повторение процесса первичной калибровки фрезерного оборудования.

Практика

Подготовка фрезерного станка к работе. Подготовка заготовки к фрезерованию. Фрезеровка имени на мягких материалах в ручном режиме управления с использованием виртуальной панели управления VPanel for SRM20.

Форма контроля

Контрольное задание. Опрос.

Раздел 3 «Режимы моделирования и библиотеки в КОМПАС-3D»

Tema 3.1 Режимы твердотельного моделирования деталей и сборки в КОМПАС-3D Теория

Изучение этапов создания трехмерной модели детали в системе автоматизированного проектирования КОМПАС-3D. Изучение команд формообразования для создания сложных по геометрии моделей, команд оптимизации работы в режиме твердотельного моделирования. Формирование представления об инструментах диагностики ошибок построения эскизов и геометрии фигур. Актуализация знаний о способах добавления деталей в сборку. Изучение способов взаимного расположения деталей в документе «Сборка»: по координатам, по сопряжениям. Изучение способов фиксации трехмерных моделей деталей в сборке.

Практика

Самостоятельное создание трехмерных моделей деталей механизма «Блок» в документе «Деталь» программы КОМПАС-3D по чертежам. Сборка деталей механизма «Блок» с помощью сопряжений.

Форма контроля

Контрольное задание.

Мероприятие по воспитательной работе

Ситуативная игра, посвященная дню учителя.

Тема 3.2 Библиотека «Стандартные изделия». Добавление унифицированных крепежных деталей в сборку

Теория

Знакомство с понятием унификации. Изучение библиотек в системе автоматизированного проектирования КОМПАС-3D. Знакомство с библиотекой «Стандартные изделия». Изучение каталогов и способов изменения настроек стандартных изделий. Рассмотрение каталога «Крепежные изделия». Знакомство со способами добавления крепежных изделий в сборку.

Практика

Добавление и удаление стандартных изделий из сборки. Добавление готового крепежного соединения. Самостоятельное добавление крепежных изделий из библиотеки «Стандартные изделия» согласно размерам, в сборку механизма «Блок».

Форма контроля

Контрольное задание.

Тема 3.3 Режим моделирования листовых деталей в КОМПАС-3D

Теория

Формирование представления о понятии «листовое тело». Знакомство с режимом построения листовых тел в системе автоматизированного проектирования КОМПАС-3D. Знакомство с интерфейсом рабочего поля. Изучение команд «листовое тело», «сгиб по линии», «открытая/закрытая штамповка», «подсечка», «жалюзи».

Практика

Самостоятельное создание листовых деталей «Лепесток», «Кронштейн», «Скоба» в режиме построения листовых тел в системе автоматизированного проектирования КОМПАС-3D по приведенным чертежам.

Форма контроля

Самостоятельная работа.

Тема 3.4 Быстрое моделирование деталей машин и механизмов с помощью встроенных библиотек

Теория

Знакомство с понятиями «механизм» и «машина». Рассмотрение конструкции типовых механизмов передачи сил и движений. Изучение библиотек «Пружины» и «Валы и механические передачи 3D». Изучение способов ввода и изменения параметров пружин и зубчатых колес.

Практика

Создание трехмерной модели спиннера «Планетарный редуктор» с использованием библиотеки «Валы и механические передачи 3D».

Форма контроля

Опрос.

Тема 3.5 Библиотеки для осуществления расчетов моделей в КОМПАС-3D

Теория

Знакомство с видами расчетов. Проверка деталей на прочность и устойчивость с использованием прикладных библиотек. Изучение видов сил и режимов нагружения. Знакомство с библиотекой «APM FEM». Изучение команд нагружения. Задание параметров расчетов. Поиск опасных участков деталей. Визуализация нагружений.

Практика

Самостоятельный прочностной расчет ранее выполненного механизма «Блок». Сохранение анимации нагружения.

Форма контроля

Опрос. Тест.

Мероприятие по воспитательной работе

День инженера.

Раздел 4 «Подготовка конструкторско-технологической документации»

Тема 4.1 Создание ассоциативных чертежей трехмерных моделей деталей

Теория

Актуализация знаний о конструкторско-технологической документации. Повторение элементов чертежа. Повторение типов линий и их назначения на чертежах. Повторение назначения полей основной надписи чертежа. Изучение интерфейса документа «Чертеж» программы КОМПАС— 3D. Формирование представления об ассоциативных чертежах. Изучение команд создания ассоциативного чертежа по трехмерной модели детали в документе «Чертеж» в программе КОМПАС-3D. Изучение команд простановки размеров и изменения типов линий на чертеже.

Практика

Создание трехмерной модели детали в режиме твердотельного моделирования в программе КОМПАС-3D. Создание ассоциативного чертежа по трехмерной модели детали. Простановка размеров на чертеже.

Форма контроля

Контрольное задание.

Тема 4.2 Создание чертежей сборки в КОМПАС-3D

Теория

Формирование представления о сборочном чертеже. Рассмотрение реальных производственных сборочных чертежей. Изучение элементов сборочного чертежа. Изучение способов создания ассоциативных сборочных чертежей для трехмерной модели сборки в программе КОМПАС-3D. Знакомство со способами простановки габаритных размеров и командами для обозначения позиций деталей, входящих в сборку.

Практика

Заполнение основной надписи чертежа. Создание сборки из заранее подготовленных деталей и ассоциативного сборочного чертежа в документе «Чертеж» в программе КОМПАС-3D. Простановка позиций деталей и габаритных размеров на чертеже.

Форма контроля

Контрольное задание.

Раздел 5 «Технологии аддитивного производства»

Тема 5.1 Программное обеспечение для подготовки файлов трехмерных моделей к печати

Теория

Знакомство с программным обеспечением для осуществления процесса 3D-печати. Достоинства недостатки популярных слайсеров. Актуализация знаний вводного модуля о слайсере Ultimaker Cura. Изучение панели расширенных настроек слайсера Ultimaker Cura. Исследование влияния настроек разных групп друг на друга. Изучение влияния настроек на время и качество печати. Знакомство с окном предварительного просмотра. Оценка правильности выставленных настроек.

Практика

Самостоятельная настройка трехмерной модели с использованием расширенных настроек программы Ultimaker Cura. Проверка правильности настройки файла для последующей печати с использованием окна предварительного просмотра.

Форма контроля

Опрос.

Тема 5.2 Технологии фотополимерной печати

Теория

Знакомство с понятием «фотополимерная печать». Изучение технологий и методов фотополимерной печати. Изучение конструкции фотополимерного 3D-принтера. Формирование представления о материалах и их свойствах, используемых в процессе SLA печати. Обсуждение достоинств и недостатков фотополимерной печати. Знакомство со слайсером Ray Ware. Изучение интерфейса и настроек модели в слайсере.

Практика

Поиск трехмерных моделей для осуществления фотополимерной печати на внешних сайтах. Самостоятельная настройка фотополимерного принтера для печати. Настройка файла трехмерной модели в слайсере Ray Ware и последующая печать.

Форма контроля

Опрос.

Тема 5.3 Выполнение кейса

Практика

Самостоятельное выполнение кейсов «Шахматные фигуры», «Кванторианская головоломка». Разработка трёхмерных моделей тематических шахматных фигур, элементов головоломки или паззла. Самостоятельная настройка файлов трехмерных моделей в слайсере. Настройка аддитивного оборудования и последующая их печать моделей на 3D-принтере. Презентация результатов работы перед учебной группой.

Форма контроля

Презентация кейса. Тест.

Раздел 6 «Технологии лазерной резки»

Тема 6.1 Изучение режимов лазерной резки в зависимости от свойств материалов

Теория

Актуализация знаний вводного модуля об основах работы в векторных редакторах и режимах работы лазерного оборудования. Повторение команд создания изображений и настроек цветов в векторном редакторе Corel Draw. Изучение свойств листовых материалов, используемых для лазерной резки. Настройки скорости и мощности реза в зависимости от материала, толщины листа и требуемого качества. Знакомство с многоуровневой гравировкой.

Практика

Самостоятельная работа по созданию сувенира «Трек на стекле» с использованием режимов гравировки и резки органического стекла.

Форма контроля

Опрос.

Мероприятие по воспитательной работе

Ситуативная игра, посвященная дню Конституции Российской Федерации.

Тема 6.2 Выполнение кейса

Практика

Самостоятельное выполнение кейсов «Вечный календарь», «Подставка для телефона» или «Объемная картина». Создание файлов деталей в векторном редакторе Corel Draw.

Настройка цветов под режимы гравировки и резки. Изготовление деталей на лазерном станке X380 и сборка.

Форма контроля

Презентация кейса. Тест.

Раздел 7 «Фрезерные технологии с ЧПУ»

Тема 7.1 Изучение режимов фрезерования в зависимости от свойств материалов

Теория

Актуализация знаний вводного модуля о фрезерном оборудовании и процессе фрезерования, режимах фрезерования. Изучение взаимного влияния скорости фрезерования, подачи и глубины на качество поверхности детали. Исследование влияния режимов фрезерования на качество поверхности детали в зависимости от свойств материала. Установка рекомендуемых параметров фрезерования в зависимости от свойств обрабатываемого материала. Изучение расширенных настроек виртуальных панелей управления фрезерными станками с ЧПУ.

Практика

Выполнение контрольного задания. Первичная настройка фрезерного оборудования. Установка заготовки на рабочий стол. Смена фрезы. Самостоятельная настройка файла трехмерной модели для осуществления процесса фрезерования. Фрезерование формы пирамиды Хеопса в автоматическом режиме управления.

Форма контроля

Опрос.

Тема 7.2 Выполнение кейса

Практика

Выполнение кейса «Форма для заливки гипса». Самостоятельный выбор материала заготовки. Установка заготовки на рабочий стол фрезерного станка с ЧПУ. Выполнение файла трехмерной модели формы, экспорт файла в формате. stl. Импорт файла в программу Modela Player 4. Настройка основных этапов, режимов фрезерования и позиции фрезерной головки. Запуск процесса фрезерования. Постобработка получившейся формы. Презентация результатов работы перед учебной группой.

Форма контроля

Презентация кейса.

Раздел 8 «Основы микроконтроллера Arduino»

Тема 8.1 Технологии работы с электронными компонентами

Теория

Актуализация школьных знаний об электричестве. Повторение закона Ома. Знакомство с электронными компонентами, используемыми в схемах и их назначением. Изучение способов соединения компонентов - последовательного и параллельного, и их влияния на сопротивление, напряжение и силу тока в цепи с помощью мультиметра. Изучение способов изображения электронных компонентов на схемах. Изучение направления дорожек на беспаечных макетных платах. Знакомство с технологиями работы с беспаечными макетными платами.

Практика

Самостоятельная сборка электронного устройства по представленным схемам с использованием беспаечных макетных плат. Выполнение экспериментов с использованием электронных компонентов, контроллеров Arduino и беспаечных макетных плат на основе журнала «Конспект хакера».

Форма контроля

Опрос.

Tema 8.2 Программирование на Arduino

Теория

Знакомство со средой программирования контроллеров Arduino IDE. Изучение интерфейса среды программирования и команд верхнего контекстного меню. Знакомство с понятием скетч. Рассмотрение блоков скетча void setup() и void loop(). Изучение операторов и переменных в скетче. Рассмотрение простых скетчей и входящих в их состав команд.

Практика

Выполнение кейсов «Пианино», «Ковбои». Сборка устройств по представленным схемам с использованием беспаечных макетных плат. Подключение платы к контроллеру Arduino. Подключение контроллера к персональному компьютеру. Написание кода в скетче. Загрузка скетча в контроллер. Тестирование устройства.

Форма контроля

Презентация кейса. Тест.

Раздел 9 «Подготовка к участию в конкурсах и олимпиадах»

Тема 9.1 Подготовка к участию в конкурсах и олимпиадах

Теория

Изучение площадок и групп с конкурсами и олимпиадами городского, регионального и всероссийского уровней. Поиск конкурсов для участия.

Практика

Непосредственное участие в конкурсах. Выполнение конкурсного задания.

Форма контроля

Выполнение конкурсного задания.

Мероприятие по воспитательной работе

«Своя игра: Живая память», посвященная дню защитника Отечества.

«Своя игра», посвященная культуре коммуникации и общения.

Раздел 10 «Разработка инженерного продукта»

Тема 10.1 Разработка инженерного продукта

Теория

Актуализация знаний о методах поиска идей, решения творческих и изобретательских задач. Изучение проектной документации. Знакомство с основами экономического расчета проекта. Расчет временных и финансовых затрат на проект. Изучение теоретической базы к выбранной проектной идее. Знакомство с этапами полного цикла создания продукта. Выбор траекторий продвижения и развития проектов.

Практика

Самостоятельный поиск проектной идеи. Подготовка проектной документации и презентации проекта. Создание моделей, чертежей и эскизов деталей с помощью программного обеспечения и их изготовление на оборудовании. Постобработка и сборка прототипа. Проведение экономического расчета проекта. Тестирование прототипа. Внутренняя защита проекта. Выставление оценок и рефлексия. Обсуждение сильных и слабых сторон проекта.

Форма контроля

Защита кейса.

Мероприятие по воспитательной работе

Квиз «Марафон здоровых привычек», посвященный всемирному дню здоровья.

Игра «ЭкоКвиз», посвященная дню экологических знаний.

Всероссийская акция, посвященная Дню Победы.

4. Организационно - педагогические условия программы

4.1. Методическое обеспечение программы

Процесс обучения по дополнительной общеобразовательной общеразвивающей программе «Хайтек» строится на основе дифференцированного и индивидуального подходов, с применением современных педагогических технологий и методов обучения, в числе которых:

- кейс-технология анализ реальных проблемных ситуаций для выработки решений в ходе практической деятельности;
- междисциплинарное обучение интеграция знаний из разных предметных областей;
- проблемное обучение стимулирование познавательной активности через постановку задач без готовых ответов;
- развитие критического мышления формирование навыков анализа, интерпретации и оценки полученной информации;
- здоровьесберегающие технологии методы, снижающие умственные и физические перегрузки и сохраняющие работоспособность обучающихся;
- ИКТ и электронные средства обучения применение цифровых инструментов для работы и интерактивного взаимодействия;
- игровые, проектные и исследовательские методы обучение через практику, моделирование и эксперименты.

Программа сочетает теоретическую подготовку с акцентом на практическую деятельность, где большая часть времени отводится формированию прикладных навыков.

Формы занятий: комбинированные занятия, лабораторно-практическая работа, соревнование; творческая мастерская; защита проектов; командный зачет.

Помимо традиционных подходов и методов обучения, в ходе занятий широко применяются:

- эвристические и исследовательские методы;
- самостоятельная работа;
- дискуссии и диалоговые формы обучения;
- социально-психологические методики;
- методы изобретательства;
- дифференцированные приемы обучения, адаптированные под индивидуальные возможности учащихся.

Основным методом организации учебной деятельности по программе является метод кейсов. Кейс — это смоделированная проблемная ситуация, близкая и понятная обучающимся, требующая анализа, поиска информации и нахождения оптимального решения. Данный метод развивает широкий спектр навыков, необходимых в реальной жизни и профессиональной деятельности. Обучающиеся в ходе анализа проблемной ситуации погружаются в нее, примеряя на себя роль главного героя кейса и принимая решения от его лица, при этом акцент делается не на заучивание готовых знаний, а на их самостоятельную выработку. Полученное решение носит творческий и самостоятельный характер. Таким образом, кейс-метод способствует развитию не только прикладных навыков (hard-skills), но и гибких навыков (soft-skills), широко востребованных в профессиональной деятельности.

Оценка образовательных результатов по итогам освоения программы проводится в форме промежуточной аттестации. Основные формы аттестации – презентация и защита кейсов.

Оценка результатов деятельности производится по трём уровням:

- уровень «высокий»: работа над кейсом/проектом носила творческий, самостоятельный характер, идея решения является новой и актуальной (востребованной), кейс выполнен в полном объеме и в планируемые сроки;
- уровень «средний»: обучающийся выполнил основные задачи кейса/проекта, решение является измененной (модернизированной) версией имеющегося аналога, имеют место частичные недоработки или опоздания по срокам;
- уровень «низкий»: идея не выработана, работа над кейсом/проектом не закончена, большинство целей не достигнуты, работа полностью скопирована по имеющимся аналогам, в т.ч. из сети «Интернет».

Обязательным условием достижения результатов обучения по программе является наличие продуктового результата:

- не менее одного кейса, созданного с использованием каждой из представленных в квантуме технологий: лазерной, аддитивной, фрезерной;
- участие в работе команды или нескольких команд по разработке проектов в ходе обучения.

Мониторинг образовательных результатов.

Цель мониторинга образовательных результатов – сбор сведений об уровне достижения обучающимися результатов освоения образовательной программы на

различных ее этапах. Предмет мониторинга – результаты и достижения обучающихся на разных этапах освоения программы.

Система отслеживания, контроля и оценки результатов обучения по настоящей программе имеет три основных критерия:

- 1. Надежность знаний и умений предполагает усвоение терминологии, способов и типовых решений в сфере квантума.
- 2. Сформированность личностных качеств определяется как совокупность ценностных ориентаций в сфере квантума, отношения к выбранной деятельности, понимания ее значимости в обществе.
- 3. Готовность к продолжению обучения в Кванториуме определяется как осознанный выбор более высокого уровня освоения выбранного вида деятельности, готовность к соревновательной и публичной деятельности.

Критерий «Надежность знаний и умений» предусматривает определение начального уровня знаний, умений и навыков обучающихся, текущий контроль в течение занятий модуля, а также итоговый контроль.

Входной контроль осуществляется на первых занятиях разделов в ходе наблюдения педагога за работой обучающихся над выполнением учебных заданий и кейсов, а также опросов согласно изучаемой тематике.

Текущий контроль проводится в различных формах, предусмотренных разделами и темами настоящей программы. Цель текущего контроля — определить степень и скорость усвоения каждым ребенком материала и скорректировать программу обучения, если это требуется.

Итоговый контроль проводится в конце каждого модуля. Итоговый контроль определяет фактическое состояние уровня знаний, умений, навыков ребенка, степень освоения материала.

Формы подведения итогов обучения:

Опрос (рефлексия) - метод, направленный на сбор отзывов обучающихся о процессе обучения, возникших трудностях и собственных впечатлениях от изучаемого материала.

Тест - структурированное задание, состоящее из вопросов различного типа (одиночный и множественный выбор, свободный ответ, задания на соответствие), направленное на проверку знаний по определенной теме.

Презентация работы — вид контроля, предполагающий отработку навыков публичного выступления по результатам выполнения контрольного задания по изучаемой теме.

Защита кейса/проекта - вид контроля, предполагающий публичное представление индивидуального или командного решения и результат работы над решением определенной задачи.

Контрольное задание – прикладное задание, предполагаемое для самостоятельного решения с целью отработки навыков пользования программным обеспечением или оборудованием.

Дискуссия - метод, который включает в себя обмен мнениями и аргументами по обсуждаемой теме среди обучающихся.

Критерий «Сформированность личностных качеств» включает в себя оценку и измерение социальных компетенций, таких как осознанность в действиях, ценностное отношение к собственной деятельности, а также уровень мотивированности, интереса и удовлетворенности образовательных и духовных потребностей.

Критерий «Готовность к продолжению обучения в Кванториуме» предполагает сформированность установки на продолжение обучения в Кванториуме по иным модулям настоящей программы разного уровня сложности, включая готовность ребенка к публичной деятельности и участию в соревнованиях через использование методов социальных проб, наблюдения и опроса.

Каждый критерий имеет показатели, на которые ориентированы оценочные средства, применяемые в ходе обучения (комплект методических и контрольно-измерительных материалов). Примеры контрольно-измерительных материалов и оценочных средств приведены в приложении 3.

Среди инструментов оценки образовательных результатов применяются:

- промежуточная аттестация по окончании модуля на основе требований Положения о промежуточной и итоговой аттестации детского технопарка «Кванториум»;
- применение различных видов контроля по окончании раздела или входящих в него тем (опрос/тест/контрольное задание/презентация/дискуссия):
- участие во внешних и внутренних мероприятиях конкурсах и олимпиадах различного уровня.

4.2. Материально-техническое обеспечение программы

В состав перечня оборудования Хайтек-квантума входят:

Оборудование

№ п.п	Наименование
1	Гравировальный станок GCC LaserPro SmartCut X380 100 W
2	Поворотное устройство для гравера GCC LaserPro SmartCut X380 100 W

3	3D принтер фотополимерный Moonray S с источником бесперебойного питания
4	3D принтер расширенного формата Picaso Designer XL с источником бесперебойного питания
5	3D принтер с 2-я экструдерами BCN3D Sigmax с источником бесперебойного питания
6	3D принтер учебный с принадлежностями Hercules 2018
7	3D принтер для прототипирования Ultimaker 2+
8	3D принтер с 2-я экструдерами Ultimaker 3
9	3D сканер RangeVision Spectrum с источником бесперебойного питания
10	ИБП IPPON Smart Power Pro II Euro 1200
11	Фрезерный учебный станок с ЧПУ Roland MODELA MDX-50 с принадлежностями, набор фрез и комплектом цанг
12	Поворотная ось zcl-50 для станка Roland MODELA MDX-50
13	Фрезер учебный Roland SRM-20 с принадлежностями
14	Токарный станок по дереву JET JWL-1015
15	Набор оборудования для работы учебного токарного станка с ЧПУ "ЮНИОР- Т"
16	Стол учебного токарного министанка с ЧПУ ЮНИОР-Т
17	Радиально-сверлильный станок JET JDP-17
18	Промышленный пылесос CROWN CT42028
19	Держатель третья рука с лупой х2.5, подставкой под паяльник и LED подсветкой ZD-126-3 REXANT 12-0250
20	Индукционная паяльная станция PS-900 Metcal
21	Пистолет термоклеевой электрический ЗУБР "Мастер" 06850-20-08_z02 с набором стержней
22	Мультиметр DT 9208A
23	Мультиметр DT 181
24	Настольный мультиметр МЕГЕОН 22130
25	Паяльная станция 100-450С 220В 48Вт REXANT ZD-99 12-0152 Универсальный вакуумный пылесос ДИОЛД ПВУ-1400-60 70010040
26	Сверлильный настольный станок JET JDP-8L-M
27	Токоизмерительные клещи ЗУБР "Профессионал" PRO-824 59824
28	Аккумуляторный многофункциональный инструмент Makita TM30DWYE
29	Многофункциональный инструмент реноватор Makita TM3000C Пила торцовочная сетевая METABO KS 216 M LASERCUT
30	Промышленная тележка, подкатная WW3
31	Сабельная пила Набор BOSCH Ножовка PSA 900 E
32	Настольный сверлильный станок JET JDP-8BM
33	Тиски "Мастерская" ширина губок 150мм WILTON
34	ЈЕТ ЈВG-200 ЗАТОЧНЫЙ СТАНОК (ТОЧИЛО)

35	ЈЕТ JSG-64 ТАРЕЛЬЧАТО-ЛЕНТОЧНЫЙ ШЛИФОВАЛЬНЫЙ СТАНОК
36	Точильный станок Зубр ЗТШМ-150/200У z01 (точило с охлаждением)
37	Дрель аккумуляторная Bosch GSR 120-LI 2*1.5Ач
38	Электролобзик Makita 4329
39	Ящик для инструмента металлический ЗУБР "Эксперт" 38151-25
40	Сет для мелочей Grand 5 секций 400x219x287 мм
41	Кассетница серии 550 в комплекте с прозрачными ячейками (24 шт.)
42	Контейнер с крышкой, 8 л, синий
43	Органайзер пластиковый ЗУБР "МАСТЕР" "ВОЛГА-20" 38034-20
44	Вытяжная установка Тайфун-1100
45	Подставка для паяльника
46	ИБП Line-Interactive CyberPower BS650E 650VA/390W USB (4+4 EURO) NEW
47	Специализированный ПК в пылезащищённом корпусе для фрез. ЧПУ и лазерного гравера. (Процессор Intel Core i5-8400 OEM, МатПлата ASUS PRIME H310M-R, Модуль памяти 16Гб Crucial CT16G4DFD824A, Накопитель SSD 250 Гб Samsung MZ-76E250BW 2.5", Жесткий диск Seagate ST2000DM008, Привод DVD±RW LITE-ON IIHAS122-04/-14/-18, Корпус CROWN CMC-SMP888)
48	Монитор Viewsonic 27" VA2710-mh IPS SuperClear, Tilt, VESA, Black
49	Высокопроизводительная рабочая станция-компьютер Процессор: Intel Core
50	I7-8700K BOX, МатПлата: GIGABYTEZ370P D3, Модуль памяти: 16Г6 Crucial CT16G4DFD824A, Накопитель: SSD 250 Г6 Samsung MZ-76E250BW 2.5", Жесткий диск: Seagate ST2000DM008, Привод: DVD±RW LITE-ON IIHAS122-04/-14/-18, Корпус CROWN CMC-SMP888, Видеокарта: ASUS DUAL-RTX2060-6G, Windows 10 Prof, ПО: Microsoft Office Home and Business 2016 32/64 Russian Russia Only DVD No Skype P2
51	Широкоформатный полноцветный принтер в комплекте со стендом Canon iPF TX-3000 (36"/914mm, 5 colors (max 700 ml), 2400x1200dpi, 128GB (Physical memory 2GB), 500GB (Encrypted) HDD, USB/LAN/WiFi, СТЕНД
52	Режущий плоттер Graphtec FC8600-75
53	Клавиатура Logitech Keyboard K280E USB
54	Мышь Logitech M105 Black (черная с рисунком, оптическая, 1000dpi, USB, 1.5м)
55	Габариты 600х500х1180 мм, серый графит
56	Стойка для размещения ПК Twinco
57	Стул Снилле Габариты 67х67х83, цвет белый
58	Тележка инструментальная Toolbox TBS-8 Габариты 775х468х800, цвет синий с сером
59	Стол с ящиками Атлант ATL06 Габариты 1500х800х600, цвет серый
60	Система хранения материала мобильная (кассетница) TRESTON TR 1630-1
61	Габариты 410х605х980 мм, цвет синий с серым
62	Шкаф инструментальный ПРАКТИК TC-1995-120412 Габариты 985x500x1850 мм, цвет серый, синий

DOOT детского технопарқа «Кванториум» Идентификационный номер – ДСМК 2.10 ДООП- 01.05.04 Стр. 30 из 49

63	Магнитно-маркерная доска BRAUBERG PREMIUM 1800x1200 мм
64	Тумба металлическая СШИ.Т-02.00.06 Габариты 565х600х835 мм
65	Инструментальная тележка PROFFI TI Габариты 820х450х870 мм, цвет серый с синим
66	Тумба металлическая ТВР-9 Габариты 1024х600х1000 мм
67	Мусорный контейнер 240 л 24. С29
68	Габариты 721х582х1069 мм, синий 1801-4/11 Габариты 1000х360х1800 Габариты 1000х400х2500 мм
69	Стеллаж с пластиковыми ящиками
70	Архивный стеллаж Верстакофф 110011
71	Стеллаж полочный усиленный "Универсал 6 полок" Габариты 1066х400х1855 мм
72	Паяльный стол с антистатической столешницей APM-4320-ESD Габариты 1200x800x1710 мм, белый с черным
73	Антистатическое кресло АЕС-3524 Сиденье 440х400 мм, синий
74	Демонстрационная полка Габариты 2500x1600x300 мм, синий
75	Полка куб Габариты 300х300х200, оранжевый
76	Стол для оборудования
77	Верстак слесарный однотумбовый Феррум 01.100
78	Верстак ученический для слесарных работ шириной 1200 мм. бестумбовый Феррум 01.001
79	Шкаф настенный серии «Стандарт» 03.001S один ящик
80	Система хранения расходного материала и инвентаря для станка
81	Шкаф для одежды индивидуальный Габариты 600х490х1850 мм, серый с синим

Инструменты

№ п.п	Наименование
1	Набор сверл по металлу COBALT INDUSTRIAL 8% (29 шт.) в боксе Midisafe Dewalt DT4957 (для сверлильного станка)
2	Тонкогубцы-мини ЗУБР "ПРОФИ" 22173-3-11
3	Пинцет ЗУБР д/электроники и точной механики 22211-1-120 Прецизионный пинцет угловой
4	Ножницы п/мет, 250мм прямые STAYER MAX-Cut 23055-S (для резки текстолита)
5	Набор сверл No60 Универсальный, (1-12), 43 шт. (5% кобальт) 2201084 Металлическая линейка 1000 мм
6	Металлическая линейка 30 см Металлическая линейка 60 см
7	Микрометр механический,0-25мм MATRIX
8	Молоток 600 гр. фибергл, обрез
9	Молоток 200 гр. фибергл, обрез
10	Набор бит и сверл 104 предмета, в кейсе Makita D-31778
11	Набор инструментов в чемодане 69 пр. 1/2",1/4" CrV STELS

	<u></u>
12	Набор ключей комбинированных 6-17мм 6шт CrV
13	Набор метчиков и плашек M3 -M16, 36пр, MATRIX MASTER
14	Набор напильников 200 мм 5 шт Барс
15	Набор отверток 6шт Fusion MATRIX
16	Набор отверток MATRIX Fusion 18 шт. 11452
17	Набор ударных отвёрток с шестигранником 6шт Berger BG BG1067
18	Полотно ножовочное по металлу 300мм 18 TPI Bahco
19	Ножовка по металлу 300мм трехкомп. металлпласт. рамка GROSS
20	Динамометрическая отвертка, со шкалой, регулируемая ЗУБР "Эксперт" 64020
21	Набор инструмента 15пр МЕХАНИК для рем. работ, 15пр 22052-Н15
22	Струбцина ременная Bailey Stanley
23	Струбцина тип G 125мм
24	Штангенциркуль 150 мм, цена деления 0,1мм
25	Штангенциркуль 150мм электронный
26	Рулетка в двухкомпонентном корпусе ЗУБР "ПРОФИ" "НЕЙЛОН" 34056-05-25_z01
27	Рулетка в двухкомпонентном корпусе ЗУБР "ПРОФИ" "НЕЙЛОН" 34056-10-25_z01
28	Щетка-сметка 3 ряд, 280мм

Материалы

№ п.п	Наименование
1	Подложка листовая пробковая Wicanders 6 мм (915мм*610мм) Припой с флюсом в катушке (200 г)
2	Жидкий флюс во флаконе с кисточкой
3	PLA пластик для 3D принтера, цвет белый
4	PLA HP U3print 1,75мм 1 кг
5	PLA пластик для 3D принтера, цвет серый
6	PLA HP U3print 1,75мм 1 кг
7	PLA пластик для 3D принтера, цвет синий
8	PLA HP U3print 1,75мм 1 кг
9	PLA пластик для 3D принтера, цвет салатовый
10	PLA HP U3print 1,75мм 1 кг
11	PLA пластик для 3D принтера, цвет оранжевый
12	PLA HP U3print 1,75мм 1 кг
13	PLA пластик для 3D принтера, цвет красный
14	PLA HP U3print 1,75мм 1 кг
15	PLA пластик для 3D принтера, цвет фиолетовый
16	PLA HP U3print 1,75мм 1 кг

17	ABS пластик 1,75 FL-33 1кг			
18	Flex пластик 1,75 REC натуральный 0,5 кг			
19	PLA пластик Best Filament, 2.85 мм, черный, 1 кг			
20	PLA пластик Best Filament, 2.85 мм, красный, 1 кг			
21	PLA пластик Best Filament, 2.85 мм, оранжевый, 1 кг			
22	PLA пластик BestFilament, 2.85 мм, бирюзовый, 1 кг			
23	PLA пластик REC, 2.85 мм, белый, 750 гр.			
24	PLA пластик Best Filament, 2.85 мм, серебристый металлик, 1 кг			
25	PLA пластик Best Filament, 2.85 мм, натуральный, 1 кг			
26	PVA пластик 2,85 REC натуральный 0,5 кг			
27	PVA пластик Esun 1,75 мм 0,5 кг			
28	Фотополимер Fun To Do Snow White, белый (1 л)			
29	Оргстекло 1мм 1250x2050 мм Прозрачный			
30	Оргстекло 3мм 1250х2050 мм Прозрачный			
31	Оргстекло 4мм 1250х2050 мм Прозрачный			
32	Оргстекло 5мм 1250х2050 мм Прозрачный			
33	Оргстекло 6мм 1250х2050 мм Прозрачный			
34	Оргстекло 8мм 1250х2050 мм Прозрачный			
35	Оргстекло 10мм 1250х2050 мм Прозрачный			
36	Оргстекло цветное красный 1250х2050 мм толщина 3мм			
37	Оргстекло цветное синий 1250x2050 мм толщина 3мм			
38	Оргстекло цветное желтый 1250x2050 мм толщина 3мм			
39	Оргстекло цветное зеленый 1250х2050 мм толщина 3мм			
40	Фанера ФК 2/3 сорт шлифованная Длина: 750 мм Ширина: 500 мм Толщина: 3 мм			
41	Фанера ФК 2/3 сорт шлифованная Длина: 750 мм Ширина: 500 мм Толщина: 4 мм			
42	Фанера ФК 2/3 сорт шлифованная Длина: 750 мм Ширина: 500 мм Толщина: 6 мм			
43	Фанера ФК 2/3 сорт шлифованная Длина: 1525 мм Ширина: 1528 мм Толщина: 8 мм			
	Фанера ФК 2/3 сорт шлифованная Длина: 1525 мм Ширина: 1525 мм Толщина: 10			
44	MM			
45	Двухслойный пластик ZENOMARK LASER Толщина 1.4 (мм) Ширина 600.0 (мм) Длина 1200.0 (мм) Цвет серебро царапаное/черный			
46	Двухслойный пластик SCX Толщина 1.4 (мм) Ширина 600.0 (мм) Длина 1200.0 (мм) Цвет золото глянцевое/черный			
47	Двухслойный пластик SCX Толщина 1.4 (мм) Ширина 600.0 (мм) Длина 1200.0 (мм) Цвет Белый			
48	Двухслойный пластик SCX Толщина 1.4 (мм) Ширина 600.0 (мм) Длина 1200.0 (мм) Цвет красный/ черный			
49	Комплект модельного пластика Плотность: 500 кг/м3 Размер: 1500х500х50 см			
<u> </u>	1			

50 Комплект модельного пластика Плотность: 1200 кг/м3 Размер: 1500 х 500 х 50 мм

Средства индивидуальной защиты

№ п.п	Наименование		
1	Респираторы, 5 шт.		
2	Очки открытого типа СИБРТЕХ с прямой вент. Прозрачные		
	Респиратор противоаэрозольный, многосл. конич.//DEXX 11103 Антистатический укороченный халат VA Unisex (синий (56/170)		
4	Перчатки x/б 5-ти ниточные с ПВХ (графит)		
	Халат защитный хлопчатобумажный размер L рост 170-176 Спецобъединение ДИАГОНАЛЬ синий, размер 96-100, рост 182-188 Хал 006/ 96/182		

Перечень программного обеспечения указан в Приложении 2.

4.3. Кадровое обеспечение программы

Программа предполагается к реализации несколькими работниками - педагогами дополнительного образования Хайтек-квантума.

Работа над индивидуальными и командными проектами, участие во внешних и внутренних мероприятиях предусматривает как организацию деятельности обучающихся внутри квантума, так и межквантумное взаимодействие, то есть, сотрудничество с обучающимися и командами из других квантумов.

4.4 Организация воспитательной работы и реализация мероприятий

Воспитательные задачи дополнительной общеобразовательной общеразвивающей программы «Хайтек» сформулированы с учетом комплексного подхода к развитию личности обучающегося, включающего когнитивный, эмоционально-ценностный и практико-деятельностный компоненты.

Когнитивный компонент включает в себя освоение социально значимых знаний, норм, духовно-нравственных ценностей и традиций российского общества.

Эмоционально-ценностный компонент выражен в формировании и развитии позитивного отношения к общественным нормам, традиционным российским ценностям и культурным традициям.

Практико-деятельностный компонент представлен приобретением социально значимых компетенций и формированием ценностных ориентаций и установок обучающихся.

Методический инструментарий воспитательной работы включает в себя основные методы воспитания, используемые в ходе занятий:

- метод убеждения;
- метод стимулирования;
- метод мотивации;
- методы организации деятельности и общения;
- методы контроля и самоконтроля.

Основными методами профориентационной работы с обучающимися являются:

- профессиональное просвещение;
- тематические беседы;
- дидактические игры и викторины;
- просмотр и анализ видеоматериалов;
- экскурсии на производственные предприятия.

Мероприятия, указанные в календарном плане воспитательной работы, проводятся педагогом дополнительного образования в рамках учебных занятий по настоящей программе.

Педагоги-организаторы проводят мероприятия согласно годовому плану воспитательной работы со всеми обучающимися детского технопарка «Кванториум».

КАЛЕНДАРНЫЙ ПЛАН ВОСПИТАТЕЛЬНОЙ РАБОТЫ

№п/п	Наименование мероприятия	Срок проведения	Ответственный			
Профессионально-ориентирующее воспитание						
1.	Ситуативная игра, посвященная Дню учителя	Октябрь	Педагоги дополнительного образования			
2.	День инженера	Октябрь	Педагоги- организаторы, педагоги дополнительного образования			
Социализация и духовно-нравственное воспитание						
3.	День рождения Кванториума	Ноябрь	Педагоги- организаторы			
4.	Квиз, посвящённый дню космонавтики «Просто Космос»	Апрель	Педагоги- организаторы			
5.	«КвантКонцерт»	Май	Педагоги- организаторы			
6.	«Своя игра», посвященная культуре коммуникации и общения	Март	Педагоги дополнительного образования			
Гражданско-патриотическое и правовое воспитание						
7.	Ситуационная игра, посвященная дню Конституции Российской Федерации	Декабрь	Педагоги дополнительного образования			

	«Своя игра: Живая память»,		Педагоги			
8.	посвященная дню защитника	Февраль	дополнительного			
	Отечества		образования			
9.	Областной дистанционный конкурс «Цифровая открытка ко	Апрель-Май	Педагоги-			
9.	дню Победы»		организаторы,			
10	Всероссийская акция, посвященная Дню Победы	Май	педагоги			
10.			дополнительного			
			образования			
	Эколого-валеологическое воспитание					
	Квиз «Марафон здоровых		Педагоги			
11.	привычек», посвященный	Апрель	дополнительного			
	всемирному дню здоровья		образования			
	Игра «ЭкоКвиз», посвященная дню экологических знаний	Апрель	Педагоги			
12.			дополнительного			
			образования			

5. Список литературы и иных источников

5.1. Подготовка конструкторско-технологической документации

- 1. Виноградов В.Н., Ботвинников А.Д., Вишнепольский И.С. Черчение. Учебник для общеобразовательных учреждений. — Москва: Астрель, 2009.
- 2. Ройтман И.А., Владимиров Я.В. Черчение. Учебное пособие для учащихся 9 класса общеобразовательных учреждений. Смоленск, 2000.
- 3. Черчение: Учеб. для учащихся общеобразоват. учреждений/ Ч-50 В. В. Степакова, Л. Н. Анисимова, Л. В. Курцаева, А. И. Шершевская; Под ред. В. В. Степаковой. М.: Просвещение, 2001. 206 с.: ил. ISBN 5-09-010104-3.
- 4. Флеров А. В. Создание чертежей в КОМПАС-3D LT: Учебное пособие. СПб.: НИУ ИТМО, 2015 84 с.
- 5. Основы проектирования в КОМПАС-3D v17. 2-е изд. / под ред. М. И. Азанова. М.: ДМК Пресс, 2019 232 с.: ил.
- 6. Создание трехмерных моделей и конструкторской документации в системе КОМПАС-3D. Практикум. СПб.: БХВ-Петербург, 2010 496 с.:ил. + DVD (Учебное пособие).

5.2. Режимы моделирования и библиотеки в КОМПАС-3D

- 1. Большаков, В. Бочков А., Основы 3D-моделирования. Изучаем работу в AutoCAD, КОМПАС-3D, SolidWorks, Inventor. Изд. Питер. 2012.
- 2. Е.В. Денисова, А.В. Глухова, В.В. Швецова. Компьютерная графика в системе автоматизированного проектирования КОМПАС-3D: Учебное пособие. СПбГАСУ, СПб., 2021 100 с.
- 3. Работа в системе моделирования КОМПАС-3D: практикум по дисциплине «Компьютерная графика» /Л. Е. Камалов, Е. Г. Карпухин. В 2 ч. Ульяновск : УлГТУ, 2019 Ч. 1: практикум по дисциплине «Компьютерная графика». 2019 88 с.
- 4. КОМПЬЮТЕРНОЕ ПРОЕКТИРОВАНИЕ КОМПАС-3 D . [учебное пособие] / М. А. Денисов. Екатеринбург Изд-во Урал, ун-та, 2014 76 с.
- Инженерная и компьютерная графика. Трёхмерное моделирование в Компас-3D: учебно-методическое пособие к лабораторной работе №1 и самостоятельных работ для студентов технических направлений подготовки и специальностей всех форм обучения / Н.
 Ю. Гришаева. – Томск: Томск. гос. ун-т систем упр. и радиоэлектроники, 2023 – 82 с.

5.3. Технологии аддитивного производства

- 1. Технологии Аддитивного Производства. Я. Гибсон, Д. Розен, Б. Стакер, Перевод. с англ. под ред. И.В. Шишковского. Изд-во Техносфера, Москва, 2016. 656 с. ISBN: 978-5- 94836-447-6.
- 2. Шишковский И.В. Основы аддитивных технологий высокого разрешения. СПб.: Питер, 2016. — 400 с.: — ISBN 978-5-496-02049-7.
- 3. Варфел, Т. В18 Прототипирование. Практическое руководство / Тодд Заки Варфел; пер. с англ. И. Лейко. М.: Манн, Иванов и Фербер, 2013 240 с.

5.4. Технологии лазерной резки

- 1. Вейко В.П., Петров А.А. Опорный конспект лекций по курсу «Лазерные технологии». Раздел: Введение в лазерные технологии. СПб: СПбГУ ИТМО, 2009 143 с.
- 2. Вейко В.П., Либенсон М.Н., Червяков Г.Г., Яковлев Е.Б. Взаимодействие лазерного излучения с веществом. М.: Физматлит, 2008.
- 3. Менушенков А.П., Неволин В.Н., Петровский В.Н. Физические основы лазерной технологии. Учебное пособие. М.: НИЯУ МИФИ, 2010. 212 с.

5.5. Фрезерные технологии с ЧПУ

- 1. Глебов И.Т. Учимся работать на фрезерном станке с ЧПУ: Екатеринбург: УГЛТУ, 2015. 115 с.
- 2. Костина, Ольга Валентиновна. Программирование фрезерной обработки в системе ЧПУ «Sinumerik» [Электронный ресурс]: учебное пособие / О. В. Костина. Екатеринбург: Изд-во Рос. гос. проф.-пед. ун-та, 2018 78 с. Режим доступа: http://elar.rsvpu.ru/ 978-5-8050-0655-6.
- 3. Пайвин А.С., Чикова О.А. Основы программирования станков с ЧПУ [Текст]: Учебное пособие «Основы программирования станков с ЧПУ» для студентов направления подготовки: Технология и предпринимательство (для ООП «050100.62 Педагогическое образование») внутривузовский компонент / Урал. гос. пед. ун-т. Екатеринбург, 2015 102с.
- 4. Вереина Л. И. Выполнение работ по профессии «Фрезеровщик» : Пособие по учебной практике : учеб пособие для студ. учреждений сред. проф. образования / Л. И. Вереина. 2-е изд., стер. М. : Издательский центр «Академия», 2016 160 с.

5.6. Программирование на Arduino

- 1. С. Монк. Программируем Arduino. Профессиональная работа со скетчами. СПб.: Питер, 2017.
- 2. Белов А.В. Программирование ARDUINO. Создаем практические устройства + виртуальный диск.- СПб.: Наука и Техника, 2018 272 с., илл.
- 3. Arduino для начинающих : самый простой пошаговый самоучитель / Стюарт Ярнольд ; [пер. с англ. М. Райтман]. Москва : Эксмо, 2017 256 с.
- 4. Электрические и электронные компоненты устройств и систем : учеб.- метод. пособие / В. В. Баранов [и др.]. Минск: БГУИР, 2019. -136 с. : ил.
- 5. Азбука электроники. Изучаем Arduino / Ю. Ревич. Москва: Издательство ACT: Кладезь, 2017 224 с. (Электроника для всех).

5.7. Разработка инженерного продукта

- 1. Блум Джереми. Изучаем Arduino: инструменты и методы технического волшебства: Пер с англ. СПб.: БХВ-Петербург, 2018. 336 с.: ил.
- 2. Диксон Дж. Проектирование систем: изобретательство, анализ и принятие решений: пер. с англ. М.: Мир, 1969
- 3. Экономическая эффективность технических решений : учебное пособие / С. Г. Баранчикова [и др.] ; под общ. ред. проф. И. В. Ершовой. Екатеринбург : Изд-во Урал. ун-та, 2016 140 с.
- 4. Азы экономики / Мария Бойко М.: Издатель «Книга по Требованию», 2015 470 с., ил.
- 5. Секреты простых механизмов/Авт.-сост. А. Н. Евсеевичева. М. : ОЛМА Медиа Групп, 2013 63, [1] с. : ил. (Как это работает).

Приложение 1

Календарный учебный график

на 2025-2026 уч.год

Квантум Группы

Программа Дата начала занятий

Объем по учебно-тематическому плану ч Модуль

Педагог

Вид учебной деятельности /		1 полу	годие		2 полугодие			лодие		
период	Сентябрь	Октябрь	Ноябрь	Декабрь	Январь	Февраль	Март	Апрель	Май	Июнь
	Тема	Тема	Тема	Тема	Тема	Тема	Тема	Тема	Тема	Тема
	(количест	(количес	(количес	(количес	(количес	(количес	(количес	(количес	(количес	(количес
	во часов)	ТВО	ТВО	ТВО	ТВО	TBO	ТВО	ТВО	ТВО	ТВО
		часов)	часов)	часов)	часов)	часов)	часов)	часов)	часов)	часов)
Аудиторные занятия										
Очные занятия с применением										
дистанционных технологий										
Заочные занятия с применением										
дистанционных технологий										
Самостоятельная работа										
обучающегося										
Контроль										
входной/промежуточный/итоговы										
й										
Промежуточная аттестация										

Подпись

Приложение 2

Перечень программного обеспечения «Хайтек»-квантума

В перечень программного обеспечения «Хайтек»-квантума входят:

- 1. Система автоматизированного проектирования «КОМПАС-3D v21»;
- 2. Слайсеры «Ultimaker Cura v4», Ultimaker Cura v5» для Windows;
- 3. Слайсер PrusaSlicer;
- 4. Программа для мэш-моделирования Blender;
- 5. Программа для воксельного моделирования Magical Voxel;
- 6. Интегрированный пакет графических инструментов CorelDRAW Graphics Suite, включающий в себя: графический редактор «CorelDraw», Corel PHOTO-PAINT, CAPTURE, Corel Font Manager;
- 7. Инструмент для создания G-кода для фрезерных станков с ЧПУ Roland R-Wear Studio;
- 8. Инструмент для создания G-кода для фрезерных станков с ЧПУ MODELA Player4.
 - 9. Средство управления станком с ЧПУ VPanel for SRM20;
 - 10. Средство управления станком с ЧПУ VPanel for MDX50;
 - 11. Программа для трехмерного моделирования Blender;
 - 12. Среда программирования плат Arduino IDE;
 - 13. Офисный пакет Microsoft Office;
 - 14. Средство просмотра PDF файлов Adobe Acrobat Reader;
- 15. Информационно-коммуникационная образовательная платформа для учителей и обучающихся «Сферум»;
- 16. Облачный сервис для работы с текстом, таблицами и презентациями «Яндекс документы»;
 - 17. Конструктор для создания квиз-тестов и опросов Meduza.io;
 - 18. Конструктор для создания квиз-тестов и опросов Quizizz; Браузер «Яндекс Браузер»;

ФИО_____

Приложение 3

гр. _____

Контрольно-измерительные материалы

Примеры вопросов и заданий по критерию «Надежность знаний и умений (входной контроль)»

рисунок или запись, схему, согласно те мысли в любой форме. Можно записывать даже самые « для себя ориентиры для развития в сможете сделать анализ того, что выпоудалось реализовать к его концу.	кнереальные мысли». Так Вы составите течение учебного года и в будущем олнили, а что по каким-то причинам не ныслями с одногруппниками. На этом
Я бы хотел(а)	Я уже умею
Мне нужно больше	Я должен
Мне интересно	За учебный год я успею

Примеры вопросов и заданий по критерию «Надежность знаний и умений (промежуточный контроль)»

1 ест по разделу «Режимы модел	ирования и оиолиотеки в кОМПАС-3D»
ФИО	гр
1. Что представляет собой «библиотек:	а» в КОМПАС-3D?
а) Папки с набором команд или инструмо	ентами диагностики.
б) Папки с набором стандартных или	и часто используемых элементов для быстрого
добавления в проекты.	
в) Папки, хранящие информацию об ист	пользованных командах и списках всех созданных
проектов.	
г) Набор шаблонов стандартных настрое	к режима моделирования.
2. Какое расширение файла обычно им	еют файлы деталей, созданные в режиме детали
в КОМПАС-3D?	
a) .a3d	
б) .cdw	
B) .spw	
г) .m3d	
3. Какие каталоги из перечисленных в	эходят в библиотеку «Стандартные изделия»?
а) Подшипники.	
б) Детали машин.	

- в) Крепежные изделия.
- г) Детали крепления трубопроводов и кабелей.
- д) Все из перечисленных выше.

4. Что представляет из себя параметрическое моделирование в КОМПАС-3D?

- а) Возможность создания ассоциативных чертежей на основе трехмерных моделей деталей
- б) Создание трехмерных моделей деталей, размеры и форма которых определяются параметрами (числовыми значениями), которые можно изменять
- в) Создание трехмерных моделей деталей и сборок, положение в пространстве которых четко определяется координатами

г) Добавление моделей с использованием встроенных каталогов и изменение их размеров для реализации установленных задач.

5. 0	Сколько	степеней	свободы	имеет	неопі	ределенная	точка	эскиза?
------	---------	----------	---------	-------	-------	------------	-------	---------

- 6. С помощью какой библиотеки можно быстро создавать зубчатые колеса?
- а) Валы и механические передачи 3D
- б) Стандартные изделия
- в) APM FEM 🔝
- г) KOMPAS FLOW
- д) Зубчатые колеса можно создавать только вручную в режиме твердотельного моделирования
- 7. С помощью какой библиотеки можно производить расчеты на прочность и устойчивость деталей и сборочных узлов?
- a) APM FEM 🔝
- б) KOMPAS FLOW
- в) Оптимизация IOSO-К 📶
- г) KOMPAS CHECKER

TT.		17		U	
Тест по 1	пязлепу	«Полготовкя	конструкторско	и лоі	сументяниих
I CCI IIU	раздолу	WIIOGI O I ODKA	RoncipyRiopeRo	пдоі	ху місні і ащини.

ΟИΦ	Γ	гр	

- 1. Из нижеперечисленных вариантов выберите документ, в котором пошагово описан процесс создания изделия, используемые инструменты и последовательность изготовления.
 - а) Чертеж.
 - б) Спецификация.
 - в) Технологическая карта.
 - г) Инструкция по эксплуатации.
 - д) Техническое задание.

2. Сопоставьте символ на чертеже с видом размера, в котором он используется.

Символ	Вид размера			
R	Радиальный размер			
Ø	Диаметральный размер			
0	Угловой размер			

3. Сопоставьте символ на чертеже и его название.

Символ	Название
M	Квадрат со стороной X
□X	Толщина
S	Угол наклона элемента
x45°	Метрическая резьба
R	Радиус

3. Сопоставьте тип линии и ее применение.

Тип линии	Применение
Сплошная основная	Применяется для обозначения невидимых контуров
Штрихпунктирная	Применяется для обозначения обрывов
Штриховая	Применяется для изображения мест сгибов, разрезов и наложений
Волнистая сплошная	Применяется для отображения видимого контура детали на чертеже

Штрихпунктирная с	Обозначает оси симметрии, а также используется для
двумя точками	отображения центров отверстий и кругов

- 4. Из предложенных элементов выберите те, из которых состоит размер на чертеже.
 - а) Размерная линия.
 - б) Размерное число.
 - в) Выносная линия.
 - г) Стрелки.
- 5. Какой основной стандарт (ГОСТ) регламентирует общие правила выполнения конструкторской документации в России?
 - а) ГОСТ Р ИСО 9001.
 - б) ЕСКД.
 - в) ЕСТД.
 - г) ГОСТ 2.001-2013.
- 6. Какое назначение имеет основная надпись (штамп) на чертежах и других конструкторских документах?
 - а) В основной надписи указываются все операции и инструменты, необходимые для обработки деталей.
 - б) В основной надписи содержится основная информация о документе: наименование изделия, наименование организации-разработчика, номер документа, масштаб, масса, материал и т.д.
 - в) В основной надписи указываются все детали, входящие в сборочный узел.
 - г) Основная надпись содержит виды деталей в ортогональных проекциях.
- 7. Какие из перечисленных видов конструкторских документов относятся к графическим?
 - а) Спецификация, ведомость покупных изделий.
 - б) Чертеж детали, чертеж сборочный, схема.
 - в) Пояснительная записка, технические условия, чертеж.
 - г) Технологическая карта, операционная карта, техническое задание.

8. Какие преимущества дает использование систем автоматизированного проектирования (САПР) при подготовке конструкторской документации?

- а) Минимизирует время на составление конструкторской документации.
- б) Ускоряет обмен данными между членами проектной команды.
- в) Исключает необходимость проверки и приема конструкторской документации.
- г) Все перечисленное верно.

Примеры вопросов и заданий по критерию «Надежность знаний и умений (итоговый контроль)»

Тест по разделу «Программирование на Arduino»

ФИО	гр
1. Что такое «скетч» в контексте Arduino?	
а) Блок кода.	
б) Программа, написанная для Arduino.	
в) Тип электронного компонента.	
г) Название беспаечной макетной платы.	
2. Какая функция в скетче Arduino выполняет	ся один раз при старте программы?
a) loop().	
б) setup().	
в) main().	
r) start().	
3. Какая функция в скетче Arduino выполняет	ся постоянно в цикле?
a) setup().	
б) loop().	
в) main().	
г) repeat().	
4. Какую функцию выполняет команда delay?	
а) Запускает программу.	
б) Останавливает выполнение программы на указ	анное количество миллисекунд.
в) Считывает данные с датчика.	
г) Отправляет данные по последовательному порт	гу.
5. Какой тип данных используется для храг	нения целых чисел без знака (только
положительных)?	
a) float.	
б) int.	

- в) unsigned int.
- г) char.

6. Что такое аналоговый пин на плате Arduino?

- а) Пин, который может принимать только два состояния: высокий или низкий уровень напряжения
- б) Пин, который может измерять напряжение в определенном диапазоне и преобразовывать его в числовое значение
- в) Пин для подключения кнопки
- г) Пин для подключения светодиода

7. Сопоставьте изображение электронного компонента, его название и назначение.

Изображение	Название	Назначение
	Пьезодинамик	Устройство, которое позволяет «сглаживать» углы трапеции, убирая все скачки напряжения
A	Конденсатор	Пассивный элемент электрической цепи, обладающий определённым или переменным значением электрического сопротивления
	Ультразвуковой дальномер	Полупроводниковое устройство, которое излучает свет при протекании через него тока
<u>श्री व्यक्ता</u>	Тактовая кнопка	Электронное оборудование для бесконтактного измерения расстояния до объектов
	Резистор	Акустическое устройство для воспроизведения звука
	Светодиод (LED)	Устройство, которое может накапливать электрический заряд и хранить его некоторое время
-(mt)-	Триггер Шмидта	Мгновенное замыкание контактов при нажатии

Методический инструментарий наставника

Материал представлен на сайте www.roskvantorium.ru Хайтек тулкит. Тимирбаев Денис Фаридович. — 2-е изд., перераб. и доп. — М.: Фонд новых форм развития образования, 2019-76 с.

Рекомендации наставникам

Задача наставника заключается не в том, чтобы останавливать творческий процесс, а в том, чтобы плавно направлять его с учетом технологических аспектов производства и предоставлять свободу в выполнении задач. После этого инициатор решения сам сможет внести изменения в продукт, принимая во внимание технологические ограничения и особенности оборудования. Важно, чтобы модификации основывались не на вводных ограничениях, а на тех аспектах, которые выявляет сам обучающийся. Направление «Хайтек» является максимально междисциплинарным и тесно связано с другими квантумами. Поэтому особенно важно выявлять обучающихся, проявляющих интерес к оборудованию и демонстрирующих хорошие результаты в его освоении. Такие обучающиеся могут оказывать консультации своим сверстникам из других квантумов или даже выполнять определенные работы в рамках междисциплинарных проектов. Следует также отметить, что «Хайтек» служит связующим звеном не только в детском технопарке «Кванториум», объединяя проекты в единое целое, но и может функционировать как распределенная сеть оборудования, когда детские технопарки «Кванториум» из разных регионов дополняют друг друга ресурсами и передачей опыта от специалиста к специалисту. Поэтому необходимо организовывать совместные проектные работы не только внутри детского технопарка «Кванториум», но и в рамках всей сети детских технопарков.